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Today: (discrete probabilities) 

• Color features and Matlab 

• Joint and conditional probabilities 

• Bayes's theorem and the Bayes classifier
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% Connected components!
cc = bwlabel(trace);!
mask = cc==2 | cc==3 | cc==4;!
red = img(:, :, 1);!
green = img(:, :, 2);!
blue = img(:, :, 3);!
rgb = [red(mask), …!
   green(mask), blue(mask)];
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n x 3 array of pixel values

trace cc

mask



• Brightness does not 
matter  

• Yellow ∝ [1 1 0] 
• Orange ∝ [1 0.5 0] 
• Blue does not matter

function c = colorToScalar(rgb)!
rgb = double(rgb);!
denom = sum(rgb, 2);!
nz = denom ~= 0;!
rgb(nz, :) = rgb(nz, :) ./ (denom(nz) * ones(1, 3));!
c = rgb(:, 1) - rgb(:, 2);
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orange
lemon

1 2 3 4 5 6 7 8 9 10xw

Data feature: x = bin(c) 
World state: w = {O, L} 
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conditionals

10 of these (b = 1, …10) 
!

!

2 of these (f = 1, 2)
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The Bayes Classifier
• w = f(x): given an image observation x, find the 

world state w 
• we have p(w|x) 
• f(x) = arg maxw p(w|x)
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Classifier with Confidence
• f(x) = arg maxw p(w|x)       [Bayes classifier] 
• confidence: some function of p(w|x): 

maybe c(x) = 2 [p(f(x)|x) - 1/2] for the binary case 
• can say “don’t know” if c is too small
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Noisy Functions
• f(x) is a function that maps each image observation x 

to a world state w 
• p(w|x) is a function that maps each image observation 

x to a distribution over world states w 
• conditional probabilities are noisy functions

w

x



oranges?

~oranges == lemons?
not really a binary problem!

how well can we possibly do?



Bayes Error Rate

p(w|x)

0.50  1.00  0.09  0.64  0.89  0.93  0.89  0.71  0.61  0.97 
0.50  0.00  0.91  0.36  0.11  0.07  0.11  0.29  0.39  0.03

p(w, x)
0.03 
0.32

f(x) = arg maxw p(w|x)

e = 1 - Σx  p(f(x), x) = 0.164



Cheating Big Time!

training set test set

p(w, x) = p(w | x)p(x) = p(x | w)p(w)
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Discrete Bayes’s Theorem 
[one conditional from the other]p(w, x) = p(w | x)p(x) = p(x | w)p(w)
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Bayes Example
[From Russel and Norvig, Artificial Intelligence, Prentice Hall 1995] 

• One in 20 people have a stiff neck 
• One in 50,000 people have meningitis 
• Half the people with meningitis have a stiff neck 
• If you have a stiff neck, should you worry about 

meningitis?

➜ 
←M S S

M

Ω



p(w, x) = p(w | x)p(x) = p(x | w)p(w)
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Convenient Notation Abuse

p(w, x) = p(w | x)p(x) = p(x | w)p(w)

p(w, x) = p(w | x)p(x) = p(x | w)p(w)
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p(x)
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∑
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Four functions, one name!
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∫
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</PUF� p(a, b | c, d) = p((a, b) | (c, d)) >

</PUF� p(a, b | c, d) = p((a, b) | (c, d)) >

[book uses Pr instead of p]


